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Several different approaches to simulation on deforming finite elements are shown to 
generate the same weighted residuals formulation for the evolution of the dependent variables. 
Control of node motion by means of mesh stretching in two dimensions is illustrated in the 
context of phase change problems. Simulation of problems with large phase boundary 
excursions shows good agreement with analytic solutions. 

A variety of numerical methods have now been advanced which are based on finite 
elements which move and/or deform during the course of simulation. Development of 
these methods has been inspired by a broad range of physical problems, including 
applications in heat and mass transfer [8,20], phase change [3, 121, hydraulics [ 111, 
porous medium flow [6, 191, free surface problems [27], and gas dynamics [7]. 
Generally speaking, all of these diverse applications share the common feature that 
simulation can be effectively achieved on a finite element grid whose topology-i.e., 
the number, type, and relative spatial configuration of elements-remains constant 
for large numbers of time steps; but for various reasons the node locations move as 
the simulation proceeds, giving rise to element deformation. 

In some applications, grid deformation arises from the changing location of a 
shock, phase transition, or other essential discontinuity or singularity in the solution 
which is most effectively represented at nodes or element boundaries. In other 
applications, the solution may be continuous throughout the domain, but may exhibit 
steep gradients which move about, as in convection-dominated transport problems. 
Advantage in these problems can be gained by concentrating numerical detail at any 
point in time in localized portions of the domain. Similarly, problems with distributed 
phase transition zones may require specially formulated elements which would then 
follow the motion of the zone. In other applications, the motion of an external 
boundary may be prescribed exogenously or may be tied to the solution at the 
boundary, as in free surface or ablation problems. For problems specified on infinite 
domains, accuracy and economy can be achieved with a fixed number of elements by 
keeping the numerical domain as small as possible, and stretching or expanding it as 
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the solution evolves. Finally, discontinuities or steep gradients in coefficients and/or 
forcing functions which move about through time may require element deformation 
even when the solution itself is well behaved. 

A basic concept in these applications is that node locations are adjusted 
continuously, i.e., during each time step, such that an appropriate numerical represen- 
tation is maintained throughout the spatial and temporal domains. The finite element 
method has shown itself to be well suited for this type of service for many of the 
same reasons which recommend it for fixed-grid application: irregular mesh geometry 
arising from node motion is easily accommodated; representation of functional 
variation in coefficients is possible; and higher order elements with various degrees of 
continuity among elements are available. 

Of course, grid deformation introduces additional complexities not normally 
encountered in fixed-grid simulations. Specifically, two general types of problems 
may be identified: 

(a) The changing nature of the numerical interpolation on deforming elements 
must be accounted for in the discrete problem formulation. Specifically, expressions 
involving derivatives and/or integrals of the numerical solution must be adjusted to 
account for node motion. 

(b) Node motion must be managed and controlled automatically, in a way 
which satisfies problem-specific criteria and which avoids undesirable side effects 
such as excessive element shearing, tangling, etc., and/or inappropriate local inter- 
polation. 

Successful simulation with deforming finite elements ultimately depends on the 
solution of these special problems in a way which can be automated cost-effectively 
for a given application. 

It is shown below that several apparently different approaches to problem 
formulation on a deforming grid, i.e., problem (a) above, can in fact be reduced to a 
single unified formulation for the dependent variables which is both intuitively 
appealing and easily automated. A discussion follows on the control of node motion, 
problem (b) above. While some generalizations are possible here, it appears that this 
problem is most effectively addressed in the context of specific applications. The 
remainder of the article is devoted to the synthesis and testing of a numerical method 
for phase change problems, starting with the unified formulation and demonstrating 
the selection of node control strategy as well as the conventional numerical features: 
element type, numerical quadrature, time stepping procedure, etc. Two-dimensional 
model results are shown for problems with analytic solutions, in which elements are 
subjected to very large deformation. 
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FORMULATION ON DEFORMING ELEMENTS 

At the outset, a basic identity may be established concerning the derivatives of the 
finite element basis functions di with respect to the node coordinates Xj. Since the 
node locations are assumed to be variable, the explicit dependence of $i on Xj as well 
as on X (the vector of independent space variables) must be recognized: 

Qi = #i(x, x, 3 x, 9**.9 x,)Y (1) 

where N is the number of nodes. Following the customary practice, Qi may also be 
expressed in’ the simpler form 

Qi = QiGh (2) 

where 5 is the vector of local coordinates related to X by the transformation 

x = C xj Wj(S> (3) 
j 

(The case vj = dj is the isoparametric case.) 
Application of the chain rule to (1) yields an expression for an incremental change 

in #i: 

(4) 

where Vj is the gradient with respect to Xi, holding X constant. (In conventional 3-D 
Cartesian coordinates, Vj = {8/8x,, a/aV, 3 a/az,}.) Similarly, from (3), an incremental 
change in X is given by 

dX = C (dXj vj + Xj dwj)* 
j 

(5) 

Thus, assembling (4) and (5), 

d#i =JJ (vjV#i + Vj#i) . dxj + V#i . C Xj dvj* (6) 
i j 

Note that since both sets of functions di and v/i depend upon 5 alone, d#i and dtyj 
simultaneously vanish when @ = 0. In this case, 

C (Wjv#i + vj#i) * &j = 0. (7) 

Since the condition fi = 0 can be achieved with arbitrary values of the node 
displacements dxj, then each component of (7) must vanish individually 

vj#i = -lyjvfbi. (8) 
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In 3-D Cartesian coordinates, Eq. (8) may be written as 

agi 
ax, 
@i - 
aYj 

3 
azj 

i = 
! 

-Wj 

adi - 
ax 

44 - 
ay 

% - 
az 

(9) 

The importance of the result (8) lies in the fact that the unconventional derivatives 
with respect to the node locations can be expressed in conventional terms which are 
readily computable. Thus, any problem in which these terms appear may be recast 
into friendlier form, avoiding a cumbersome set of calculations (particularly in the 
case of higher-order elements). Of direct interest herein is the implicit time depen- 
dence of the di when the Xj are time dependent. Differentiation of (1) with respect to 
time, while holding X fixed, yields 

Substitution from (8) yields 

(11) 

where the velocity Ve is interpolated among the node velocities by the coordinate 
transformation functions 

Result (ll), (12) was obtained by Lynch and Gray [ 111 by a different (although 
similar) line of reasoning. 

The result (8) is also useful in steady state problems wherein the node locations are 
unknown at the outset and thus change during the course of iteration (e.g., free 
broudary problems). Newton-Raphson solution of the weighted residual equations in 
such a case would ultimately require evaluation of the derivatives Vj#i, since the Xj 
are unknowns of the problem. Equation (8) may be used in these problems to 
simplify the calculations, particularly for higher-order elements. 

Equations (8~(12) are used below to demonstrate the inherent unity in several 
approaches to deforming-grid simulation. 
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A. Weighted Residuals Formulation 

Consider the partial differential equation 

$LU=d (13) 

which is to be solved on a deforming grid. The operator L contains the unknown 
function U and its spatial derivatives, and need not be linear. The conventional 
weighted residuals formulation is given by the set of equations 

([ $+LO-f 1 ) 9 Wi =OT (14) 

where 0 is the approximate numerical solution, Wi are a suitable set of spatial 
weighting functions, and ( , ) is the inner product notation implying integration over 
the spatial domain. Assuming a numerical solution of the form 

m 0 = 2 qt> #j<X X,(t), X,(t),..., TV(t)), (15) 
differentiation with respect to time yields 

Use of (11) yields 

The weighted residuals formulation thus becomes 

-pqj-ve .vO+LO-f ) wi 
j dt 1 ) =o 

(16) 

(17) 

(18) 

Since the space derivatives of I!? are independent of any node motion, Eq. (18) differs 
from its fixed-grid counterpart only in the term Ve . VI!?, which corrects the time 
derivatives to account for element deformation. Once the node motion is specified 
(thereby specifying both V’ and the domain of integration for the inner product), (18) 
may be evaluated exactly as in a fixed-grid treatment of the associated problem 

(19) 

where 
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Numerical integration of (18) in time may be formally stated as 

where typically Qk(t) spans only a limited portion of the time domain, allowing a 
stepwise solution in time. 

This type of formulation has been used by Lynch and Gray [ 111, O’Neill and 
Lynch [2 11, and Lynch and O’Neill [ 12, 131 for both hyperbolic and parabolic 
problems; and by Mori [ 17, 181 for Stefan problems. 

B. Coordinate Transformation 

Another line of development which has been used to advantage involves first 
restating the governing equation(s) in terms of a more convenient set of space coor- 
dinates x which are moving with respect to the original reference frame X. If the 
coordinate transformation is stated as 

x = w& 4, 

then a dependent variable U may be expressed as 

WG 4 = wqxt t), 0, 

and the various time derivatives are related by the chain rule 

(22) 

(23) 

au au - 
I I at x =at. .vu.$ ) 

x 
where, as above, V refers to the X system, holding t constant. If for clarity the time 
derivative in the x system, a/&I,, is identified as D/D& reserving the notation a/at for 
the X system, then substitution of (24) into the governing equation (13) yields 

DU/Dt - (DXlDt> . VU + LU=J: (25) 

Discussions of the use of coordinate transformations in conjunction with various 
numerical methods are found for example in Mollowney [ 161; Jensen [8]; Jensen and 
Finlayson [9]; Thompson [24]; and O’Neill [20]. 

Following O’Neill [20], finite element solution of (25) may be conveniently 
implemented by identifying the transformed coordinates 2 with the local coordinate 
system 5 on which the spatial interpolation functions are defined, such that the 
mapping is given in the form of (3). Assuming a numerical solution 6 as in (15), the 
time derivatives in (25) become 

(26) 

(27) 
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and the weighted residual statement of (25) is given by 

which is identical to (18). Integration through time may thus be expressed as in (21). 
Note that the space derivatives in (25) and (28) may be expressed and evaluated in 

either the X domain or, following suitable transformation, in the 5 domain, without 
ambiguity. While in computational practice the latter would normally be chosen for 
higher-order elements, herein these expressions are retained in their original, 
untransformed form for clarity of presentation. 

A subtle feature of (28) is the element of differential volume implied by the inner 
product notation. As written, (28) signifies integration over the original X domain. 
However, integration over the transformed domain would also be consistent with this 
approach. While the limits of integration coincide, the integrands in each case would 
differ by the presence or absence of the Jacobian determinant. 

C. Space- Time Elements 

Space-time elements have natural appeal for moving boundary problems, stemming 
from the observation that the motion of boundary nodes (or any interior nodes, for 
that matter) necessitates an irregular (X, t) grid. Most generally, the numerical 
solution on these elements is .expressed as 

o= 2 czjNj(X, t), 

where aj are constants and the Nj are the space-time basis functions. Of interest 
herein is the usual case where the Nj can be expressed as products of time and space 
basis functions: 

o= c T u+‘(t) gjj(X, x, ,...) X,), 
i 

where the #j are defined exactly as above, and the temporal interpolation w is 
independent of X. The associated deformed prism elements (Fig. 1) have the 
operational advantage that equal numbers of nodes in the same relative positions 
appear at sequential points in time. Consequently, node numbering, interpolation, 
matrix construction, and grid generation are simplied. 

Equation (30) may be re-expressed as 

O= C q(t) #jj, 

i 

where 

q. = c f+‘. 
I 

m/41/3-5 

(32) 
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FIG. 1. (a) Bilinear element in (x, y); linear in t. (b) Linear element in (x,y); quadratic in t. 

Since q(t) is the numerical solution at the point X = Xj, it is analogous to Uj(t), the 
only distinction being that a particular functional form has been assumed for q. 
Differentiation of (3 1) with respect to time yields a result analogous to (17) 

and the weighted residual statement of the governing equation (13) becomes 

‘j+#j+~‘ir-f 
j dt 1 ) , Wi Rkdt=O. 

(33) 

(34) 

The space-time element approach thus leads to a problem statement which is 
formally the same as that developed in Section A above, Eq. (21), the only distinction 
being the appearance of the numerical analog %(t) in place of its more general form 
vi(t). To further illustrate the analogy between the two, consider the case of linear 
time dependence, i.e., the w’(t) are chapeau functions. In this simple but popular case, 
the expression 

dq/dt = a;+ ‘(dw’+ ‘/dt) + ef(do’/dt) = (uf’ ’ - uf)/(t’+ 1 - t’) (35) 
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holds everywhere within the elements t’ < t < c ‘+I. Substitution of (35) into (34) thus 
yields an expression which could easily be obtained from (21) via conventional finite 
difference techniques. 

Perhaps the best-known application of space-time elements to moving boundary 
problems is the work of Bonnerot and Jamet [2,3], who solved one- and two- 
dimensional Stefan problems using linear elements. In the present terminology, they 
used the Galerkin method in space (W, = #i) and the subdomain method in time 
(a”= 1, tk<t<tk+‘; ok=0 1 e sewhere). Numerical integration was achieved with 
quadrature points at the nodes of each space-time element. Jamet and Bonnerot [7] 
used the same approach for one-dimensional compressible flow simulations, as did 
Varoglu and Finn for convective-diffusive problems [26,28] and Burgers’ equation 
[29]. (The latter authors introduce node motion based on the characteristics of the 
associated hyperbolic equation.) Application to a two-dimensional transport problem 
is shown in Varoglu [25]. 

D. Error Minimization 

Miller and Miller [ 15 ] developed a one-dimensional deforming-grid approach 
based on the i;p* norm of the residual R = &/at + Lo-f 

(36) 

Subsequent work by Alexander, et al. [ I] extends the development to two space 
dimensions. Assuming a solution of the form (15), differentiation of Z with respect to 
dUi/dt, keeping the Vi fixed, yields the conditions 

(37) 

where 

pj=vjo=c u,v,$li,. (38) 
i 

Use of (8) yields 

p,=-c uiv$ilyj=-yljvo, 
i 

and thus (37) may be restated as 

([ ( 7 !%$j-+$ l//j*VO) +LO-f],(i)=“* 

(39) 

(40) 

Noting the definition in Eq. (12) of Ve, Eq. (40) can be seen to be identical to the 
Galerkin version of (18). (Note that the integration in (36) is over the spatial domain 
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only, while a classical least-squares approach would involve integration over time as 
well and subsequent application of the calculus of variations.) 

Extension to systems of equations is demonstrated by Gelinas, et al. [5], wherein 
the authors consider the weighted sum of the squared P* norms of the residuals R’, 
where 

Differentiation with respect to dUi/dt while holding the Ul constant yields, regardless 
of the weights, 

(42) 

where 

pf = vj 0’. (43) 

As above, it is easy to show that 

(44) 

and thus (42) reduces to 

Thus, if all node motion is externally specified, then this approach to error 
minimization on a deforming grid produces the Galerkin formulation. (The results 
(39) and (44) can be seen to be implicit in the formulae for pi noted in the above 
references, for the particular cases of one- and two-dimensional linear elements.) 

The novel feature of the significant development by Miller, et al., is minimization 
with respect to node motion as well as dUi/dt. For nodes whose motion is 
unconstrained, differentiation with respect to dXJdt while holding the Xi constant 
yields the weighted residual expressions 

(R, Pi) = 0 (46) 

for the scalar case. In light of (39), this can be stated as 

Thus, node motions which are not otherwise specified are determined by solution of 
(47) in conjunction with (40). This intrinsic feature is not shared by any of the other 
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approaches considered herein, in which separate, additional considerations must be 
invoked to specify the motion of unconstrained nodes. 

In the case of a system of governing equations, the minimization produces a 
weighted sum of individual components as in (46) 

F w,(R’, Pi> = 0, (48) 

where w, are the externally specified weights and Pf is defined above. 
The potential, noted by Miller and Miller [ 151, for Eqs. (40) and (46) to become 

indeterminate can be seen herein to apply to a broad class of multidimensional 
elements. The indeterminacy arises when the functions #i and pi are not linearly 
independent. In view of (39), this will be true when at least one component of Vir is 
constant over the support space for any of the vi. (This is most clearly demonstrated 
in the isoparametric case dj = wj, and is readily extended to the super- and 
subparametric cases, where one of the sets Qi or vi is a linear combination of the 
other.) In the case of systems of equations, indeterminacy will result when the above 
is true simultaneously for all V0’. 

Miller [ 141 introduced additional control over mesh motion by adding to the L?’ 
norm a penalty function containing terms analogous to internodal viscoelastic forces, 
and minimizing the sum. This additional degree of mesh control has no effect on the 
Galerkin equations (40) and (42); additional terms are added to the equations for 
mesh motion (46~(48) which eliminates the potential indeterminacy. No general 
approach seems to be available for parameterization of the penalty’ function, and thus 
the nature of the quantity being minimized becomes less clear in this case. 
Nevertheless, the results obtained by Miller [ 141 and Gelinas et al. [5] provide a 
compelling demonstration of the capabilities of simulation on deforming elements. 

E. Synthesis 
It is shown above that four different approaches to deforming grid simulation can 

be formally stated in the single unified formulation (18) or (21) for a broad class of 
multidimensional elements. The intuitive appeal of this formulation lies in the fact 
that the original PDE structure is evident in weighted residual form, with the addition 
of an extra Lagrungiun term to account for the intrinsic effects of node motion. The 
analyst may choose to interpret this correction term in the context of any of the four 
approaches-the point here is that (18) may be stated at the outset, thus proceeding 
immediately and without error to a relatively high level of problem formulation. The 
algebraic equations actually solved then depend strictly on conventional choices of 
element type, weighting functions, and quadrature, given a suitable specification of 
node motion. 

Operationally, intuitive appeal brings benefits of programming simplicity. The 
unified approach makes published pages of algebraic forms corresponding to specific 
operators, elements, quadrature, etc., unnecessary, and indeed makes simulation on 
complex, multidimensional deforming elements feasible. Programming may proceed 
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directly from Eq. (18) using conventional finite element apparatus, since the 
Lagrangian correction is stated in familiar, easily computable gradient form. Adap- 
tation of existing fixed-grid programs is similarly facilitated. 

SPECIFICATION OF NODE MOTION 

In addition to the dependent variables of the original, continuous problem, 
deforming grid simulation implies several numerical degrees of freedom associated 
with the trajectories of moving nodes. While the formulation (18) incorporates the 
effects of this motion on the dependent variable equations, it does not generate 
additional equations to specify the motion. Automatic control of node motion is the 
second significant departure from conventional fixed-grid methods, and significant 
methodological diversity exists in this area. 

For nodes which lie on a moving boundary or internal shock, a boundary or jump 
condition will normally be available which will specify at least the normal component 
of these node motions. Nodes which lie on fixed boundaries either have their 
positions fixed or are constrained to move parallel to a fixed boundary. Additionally, 
some node placement may be dictated by the need for accurate representation of coef- 
ficients or source terms exhibiting steep gradients, discontinuities, or singularities 
which are fixed in space or which move along known trajectories. Nevertheless, once 
these constraints on node motion are satisfied, one can expect to have additional 
unspecified degrees of freedom. 

Several possibilities have been explored for specifying node motion; most are 
problem-dependent and rely heavily on one’s intuition regarding the form of the 
solution. For example, Lynch and Gray [ 10, 111 allow node motion only at moving 
boundaries-all interior nodes remain fixed in space. The moving boundary condition 
prescribes the value of node velocity normal to the boundary, and in order to reduce 
element shearing, the tangential boundary node velocity is set equal to zero. It is 
apparent that this approach is useful only when boundary movement is relatively 
small. 

O’Neill and Lynch [2 1 ] and Lynch and O’Neill [ 121 solved several one- 
dimensional Stefan problems wherein large displacements occur and all nodes not 
attached to the fixed boundary are in motion. The phase boundary node location s(t) 
is calculated from the boundary condition; all interior nodes are then moved propor- 
tionally, according to their initial positions: 

x,(t) = w)(x,ww))~ 

Bonnerot and Jamet [3] employ a similar criterion for node movement in two 
dimensions. Since the primary boundary motion is in one coordinate direction, no 
node motion is allowed in the other direction throughout the grid. Thus, the degrees 
of freedom associated with node positions are halved. The initial grid is composed of 
“strings” of nodes which are stretched individually in a way similar to Eq. (49) as the 
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simulation progresses. Neumann and Witherspoon [ 191 employ a similar procedure 
in two dimensions, although the directional orientations of the individual strings of 
nodes are allowed to change through time. Santos [23] retriangulates the domain 
contained by a moving boundary after each time step, subject to the constraint that 
mesh topology remain constant. 

Varoglu and Finn [26, 28, 291 move the nodes along characteristic lines of hyper- 
bolic equations; this procedure requires that nodes be created and/or removed from 
time to time. Jensen [8] and Jensen and Finlayson [9] translate the undeformed mesh 
to follow steep fronts in the computed solution, requiring similar adjustments at lixed 
boundaries. O’Neill [ 201 concentrates nodes in the vicinity of steep one-dimensional 
fronts based on consideration of the numerical Peclet number in the deforming coor- 
dinate system; element stretching is allowed in regions where solution gradients are 
small and near fixed boundaries. 

Most of these methods rely on an intuitive, a priori knowledge of the solution in 
order to simplify the problem of node location and movement. Thus, for complex 
problems, a poor solution could result due to awkwardly or excessively constrained 
nodes. A more general approach is needed when foreknowledge of the solution is 
lacking or when intuitive rules for node motion are too complex to implement 
manually. Such a general approach should exhibit at least three qualities: (1) It 
should be capable of generating node locations given the minimum amount of infor- 
mation, i.e., the location of fixed nodes and the total or normal displacements of 
shocks or moving boundary nodes. (2) Bunching of nodes, element shearing, and 
general tangling of the grid should be avoided. (3) The computations should be 
capable of automation within the usual finite element time stepping procedure. 

The minimization technique of Miller [ 141 generally exhibits these qualities, 
although the use of the penalty function to avoid degeneracy appears to be somewhat 
arbitrary, relying upon intuitive notions of interelement forces. An alternative which 
will be pursued herein is a generalization of the grid-stretching approach (Eq. 49): the 
grid is constrained to behave as a linearly elastic solid. Node displacements from 
their initial positions thus correspond to states of strain which are uniquely specified 
given total or normal displacements of all boundary nodes. This approach will in a 
sense minimize mesh irregularities, and the computations of node displacements are 
readily automated using standard finite element procedures. In some applications, the 
elasticity equations may be solved on the initial, undeformed grid, in which case a 
single assembly and upper-triangularization of the stiffness matrix will s&ice for a 
(potentially) large number of time steps. While this approach is most applicable to 
moving boundary problems, internal discontinuities or steep gradients can be dealt 
with by partitioning the domain into separate elastic subdomains, and by judicious 
variation of elastic properties. 
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FORMULATION FOR PHASE CHANGE PROBLEMS 

To illustrate the synthesis of these concepts into a computational algorithm, 
consider the one-phase Stefan problem in two space dimensions. On the interior of 
the domain, the temperature field T is governed by the heat equation: 

aT 
Cat-VKVT=O, (50) 

where C and K are thermal properties. Initial conditions and boundary conditions on 
fixed boundaries are those normally associated with this equation. The distinguishing 
feature of the problem is the presence of a moving phase boundary, where conditions 
are imposed on both T and VT 

T=O, (51) 

K(VT - II) = L(V . n), (52) 

where V is the motion of the boundary, n is the unit vector normal to the boundary, 
and L is a thermal property. 

The Galerkin formulation for (50) follows directly from (18). Integration of the 
heat flux term by parts yields 

= KVT. n#idS Q i = l,..., N. (53) 

Boundary conditions on fixed boundaries are handled in the usual way. If node i lies 
on a Dirichlet boundary, then equation i is sacrified in favor of direct specification of 
Ti(t). Neumann boundary conditions are recognized in the surface integral. The 
moving phase boundary is treated as a Dirichlet boundary. A conventional two-level 
implicit finite difference procedure is used to integrate (53) through time. The inner 
products are evaluated at time t + &At (0 < E < l), as are all spatial gradients. The 
time derivatives of Tj and Xj (embodied in Ve) are approximated by simple 
differences across the interval At. 

Phase boundary motion must be determined in accordance with (52). Since this 
equation cannot be satisfied everywhere on the discretized boundary, a weaker 
integral form is imposed: 

L ~~V,),.ndS=!‘KVT.ndS=j’~I,KVT.ndS, (54) 

where the integration is over the phase boundary and the summation is over phase 
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boundary nodes only. Satisfying (54) term-by-term gives a local allocation of the 
computed heat flux among the boundary nodes 

LV, .i #in dS =( $iKVT’ n dS (55) 

or 

LV, + ni =J;., (56) 

where ni and x are the weighted average of the unit normal and the heat flux 

Si=J’~iKVT. ndS .~idS. 

The normal components of the phase boundary velocities are thus obtained from the 
computed heat flux; the tangential components may be arbitrarily specified to suit the 
particular application. In some cases it will be advantageous to specify no node 
motion tangent to the phase boundary; in other cases the tangential motion may be 
left unconstrained. 

On fixed boundaries, the natural conditions are either no motion or no motion 
normal to the boundary. 

Interior node motion is governed by the equations for elastic displacement in plane 
stress with constant material properties 

a’ir va’3 l-v a20 a2v 
axz+ -+ 2 axay ( IL 5’+ 

- =o, 
axay I 

a’P 4’0 l-v --- 
2+axay+ 2 aY ( IL 

a2F + a’ir 
ax2 

- =o, 
axay I 

(59) 

(60) 

where (0, @ is the displacement rate of a point in the mesh. Galerkin treatment of 
(59) and (60) subject to the above boundary conditions yields equations for the 
interior nodal velocities Vi. The Poisson ratio v is arbitrarily set at zero, 
corresponding to a maximum shear modulus. On boundaries where elastic tangential 
motion is allowed, the tangential force is assumed to vanish. 

In special cases, the stiffness matrix associated with (59) and (60) may be kept 
stationary by continually solving on an initial, undeformed mesh. A necessary 
condition for this economy is that the orientation of boundaries where tangential 
motion is allowed be constant. (This will not generally be the case when such motion 
is allowed on a moving phase boundary.) Of course, large displacements from an 
initial, undeformed mesh will ultimately require that the stiffness matrix be updated. 
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Integration of the nodal velocities is achieved within a time step by 

dX,/dt = (Xi+” - X:)/At = @V;+” + (1 - 0) V;. (61) 

The time weighting parameter 19 is intentionally different from E, to provide additional 
numerical flexibility. 

When 8 = 0, a typical time step may be achieved as follows: At the known time 
level t, the phase boundary velocities are calculated from (56), and the elasticity 
equations are solved for all remaining node velocities. An explicit projection is then 
possible for the node locations at time t + At, using (61), and the term V’ is deter- 
mined over the interval At. Solution of (53) may then be achieved and a new time 
step begun. 

For 0 # 0, iteration is inevitable since evaluation of (61) requires unknown 
temperature information at t + At. Herein a simple predictor-corrector procedure is 
used. Initially, B is taken as zero (or equivalently, VifAt is assumed equal to Vi) and 
the above procedure is executed. The resulting solution at t + At is then used to 
recompute (61) with 8 # 0 and the steps are repeated. Further iteration is not 
pursued. 

RESULTS 

Preliminary experiments with this model are reported by Lynch and O’Neill [ 13 ]. 
Herein two problems are solved which have analytic solutions for comparison and 
which involve large boundary displacement. In both cases, linear triangular elements 
are used with exact integration of the inner products, and the predictor-corrector 
scheme is used with 0 = E. 

A. Freezing Around a Pipe 

The first case involves radially symmetric freezing around a pipe of finite radius, 
surrounded by an infinite unfrozen medium. An analytic solution is available 14, 
p. 2951 for the case of a constant point sink of heat at r = 0, t > 0; initial conditions 
require uniform initial temperature with no frozen phase. The finite-radius pipe test 
case is obtained by prescribing as a boundary condition the temperature at the pipe 
boundary r0 (Fig. 2) as calculated from the analytic solution. (Note that this implies 
a time-dependent boundary condition.) Simulation is initiated at that point in time 
when the phase boundary (analytically) is at r = r0 + r, with an assumed linear 
variation of T with r (a reasonable but not precise initial temperature distribution). 
This problem was solved on the quarter-space illustrated in Fig. 2, with no heat flux 
assumed on the symmetry boundaries. The physical parameters used are as folows: 
C = 0.5083 Cal/cm’; K = 0.0072 Cal/cm set “C; L = 33.012 cal/cm3; and Q = 0.10 
(heat flux at r = 0 for the analytic solution); r0 = 3.0 cm; and 7 = 0.1 cm (initial 
frozen thickness). 

The finite element grid is illistrated in Fig. 3. Grid motion was managed as follows: 
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PIPE WALL 
T = T,, (r,,,t) 

NO FLUX 

FIG. 2. Geometry for test case A: freezing around a pipe. 

no motion at r = rO, 
no tangential motion on the phase boundary, 
no normal motion along the symmetry boundaries. 

The elasticity equations were formulated once on the initial, undeformed grid 
(r,, = 3.0; r = 0.1) and the resulting stiffness matrix was left unchanged throughout 
the simulations. The time step was continually adjusted such that during each step the 
frozen thickness would increase by 20%, based upon the phase boundary velocity 
calculated in the previous time step. 

FIG. 3. Finite element grid for test case A. Radial coordinates are distorted for clarity of presen- 
tation; actual grid corresponds to initial conditions, with r0 = 3 cm and r = 0.1 cm. 
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01 I I I I I I I c 

0 .2 .4 .6 .6 1.0 ?(105 set) 

FIG. 4. Computed and analytic (-) values of the phase boundary location through 25 time steps, 
test case A, E = 0 = 0.5. 

Computed and analytic results are shown in Figs. 4-7 for the case E = 0 = 0.5. At 
larger times, a persistent over-prediction of the phase boundary location develops, 
with a secondary effect on the temperature distribution. For 19 = E = 1.0 (Figs. 8-l l), 
very good accuracy is apparent. 

A 
. 

50 - 

40- 

1.0 2.0 3.0 t(l06sec) 

FIG. 5. Computed and analytic (-) values of the phase boundary location through 37 time steps, 
test case A, E = 0 = 0.5. 
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FIG. 6. Computed and analytic (-) temperature distribution after 25 time steps, test case A, 
E = 6 = 0.5, K = K/C; 1 = 0.12935. 

A 
o- 

-1.0 - 

-2.0 - 

-3.0 - 

” 
t. 

-4.0 - 

l- 

- 6.0 - 

-6.0 

4 

-7.0 1 I I I I I I I I I I ) 

0 .I .2 .3 .4 .!3 .6 .? .6 .9 1.0 

r/m5 A 

FIG. 7. Computed and analytic (-) temperature distribution after 37 time steps, test case A, 
.5=0=0.5. 
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FIG. 8. Computed and analytic (-) values of the phase boundary location through 25 time steps, 
test case A, E = 0 = 1.0. 

60’ 

, 
0. I I I I I I I I 

1.0 2 .o 3.0 11106 S.3C) 

FIG. 9. Computed and analytic (-) values of the phase boundary location through 37 time steps, 
test case A, E = 19 = 1.0. 
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FIG. lo., Computed and analytic (-) temperature distribution after 25 time steps, test case A, 
&=e= 1.0. 

o- 

-1.0 - 

-2.0 - 

-3.o- 

0 

L 
-4.o- 

c 

-3.0 - 

-6.0 - 

-?.O- I I I I I I I I I I 1 
0 .I .2 .3 .4 .s :6 .7 .8 .9 I.0 

r/m5 A 

FIG. 11. Computed and analytic (-) temperature distribution after 37 time steps, test case A. 
E=e= 1.0. 
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Note that in this case, the frozen thickness containing all of the finite elements 
increases from 0.1 cm to 5.4 cm over only 37 time steps, with no disturbing conse- 
quences. Nodal displacements and computed temperature gradients are essentially 
zero in the circumferential direction. Radial mesh deformation is practically uniform, 
yielding a satisfying deployment of interior nodes throughout the simulation (note the 
node point locations on Figs. 10 and 11). 

B. Freezing in a Corner 

The analytic solution for this test problem is given by Rathjen and Jiji [22] for the 
case of uniform wall temperature along x = 0 and y = 0, with boundaries at infinity. 
Initial conditions are constant temperature everywhere with no solid phase. This 
problem was solved using material properties as above, with wall temperature 
= -10 “C. 

Numerical initial conditions assume a small frozen zone varying in thickness from 
0.2 cm at the semi-infinite end to 0.24 cm near the corner (Fig. 12), which appprox- 
imates the analytic values at t = 10.0 sec. Initial temperature variation was linear in 
y, with suitable adjustment in the vicinity of the corner. Grid motion was controlled 
as follows: 

along the fixed boundaries at y = 0 and y =x, no normal motion and free 
tangential motion; 

along the phase boundary, free tangential motion; 
. along the semi-infinite boundary, free tangential motion. 

In order to keep the semi-infinite boundary sufficiently ahead of the advancing 
freezing front, the normal motion of this boundary was arbitrarily specified such that 
x2/t remained constant. The stiffness matrix was reformulated during each time step. 
As above, At was continually adjusted such that the frozen thickness at the semi- 
infinite end increased by 10% during each step. 

Computed node locations after 14 and 40 time steps are displayed in Figs. 13 and 
14, for E = 0 = 0.6. After 40 steps, the frozen zone had increased in thickness (y 
dimension) by about a factor of 35. The phase boundary values of y/G at the semi- 
infinite end and at the corner line y =x reached asymptotes of 0.0645 and 0.0727 
respectively, which agree well with the analytic solution. 

SYMMETRY 
BOUNDARY 

y (NO FLUX) 

(cm) 1 
PHASE EOUNOARY 
IT= 0) 

0.0 SEMI -INFINITE 
END (NO FLUX) 

ALL (CONSTANT T) 

FIG. 12. Geometry and initial grid for test problem B: freezing in a corner. 
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CONCLUSIONS 

It is shown above that several good, proven approaches to problem formulation on 
deforming elements can be expressed in a single, unified weighted residuals statement 
of the equations governing dependent variable evolution. This unified formulation 
accounts for mesh motion in an intuitively appealing way and is easily implemented. 
Significantly, existing multidimensional programs which treat only fixed-grid 
problems may be converted to more general service without major reorganization. 
Among the approaches considered, differences remaining in specific applications 
involve the important problem of node control strategy, and the choice of conven- 
tional numerical parameters--elements, quadrature, time stepping, etc. The significant 
methodological diversity concerning node control is a subject worthy of continuing 
attention. In particular, emerging methods based on error minimization appear quite 
promising in terms of their generality. 

The entire discussion is restricted to simulations in which the finite element 
topology remains constant. Of course, this strategy is not perfectly general. There will 
always be situations in which an unacceptably distorted grid evolves, and rezoning is 
called for. The results presented herein demonstrate that, at least in the context of 
phase change problems, large element deformations and deformation rates are 
possible in two dimensions without adverse consequences. The elastic grid approach 
provides, in this limited context, a good and workable procedure for node motion 
control. 
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